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Some upper bounds for the energy of graphs
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Let G = (V, E) be a graph with n vertices and e edges. Denote V (G) = {v1, v2, . . . , vn}.
The 2-degree of vi , denoted by ti , is the sum of degrees of the vertices adjacent to vi , 1 �
i � n. Let σi be the sum of the 2-degree of vertices adjacent to vi . In this paper, we present
two sharp upper bounds for the energy of G in terms of n, e, ti , and σi , from which we can
get some known results. Also we give a sharp bound for the energy of a forest, from which
we can improve some known results for trees.
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1. Introduction

Let G = (V, E) be a simple undirected graph with n vertices and m edges.
Denote V (G) = {v1, v2, . . . , vn}. For vi ∈ V (G), the degree of vi , written by
d(vi ) or di , is the number of edges incident with vi . The 2-degree of vi [2] is
the sum of degrees of the vertices adjacent to vi and denoted by t (vi ) or ti . The
average 2-degree of vi , denoted by mi , is the average of the degrees of the verti-
ces adjacent to vi . Then ti = di mi . Furthermore, denoted by σi the sum of the
2-degree of vertices adjacent to vi . A bipartite graph G = (X, Y ; E) is (a, b)-
semiregular if there exist two constants a and b such that each vertex in X has
degree a and each vertex in Y has degree b. A bipartite graph G = (X, Y ; E)

is (px , py)-pseudo-semiregular if there exist two constants px and py such that
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each vertex in X has average 2-degree px and each vertex in Y has average
2-degree py . The incident graph of a 2-(v, k, λ)-design is a (r, k)-semiregular
bipartite graph with v + b vertices and vr(= bk) edges. The distance between vi
and v j in G, denoted by d(vi , v j ), is the number of edges in a shortest path join-
ing vi and v j . Moreover, if G is connected, then the eccentricity of vi , denoted
by l(vi ), is defined by l(vi ) = max{d(vi , v j ) : v j ∈ V, i �= j}.

The energy of G, denoted by E(G), is defined as E(G) = ∑n
i=1 |λi |, where

λ1 � λ2 � · · · � λn are the eigenvalues of the adjacency matrix of G. This con-
cept was introduced by Gutman and is intensively studied in chemistry, since it
can be used to approximate the total π -electron energy of a molecule (see, e.g.,
[9,10]). In 1971, McClelland [16] discovered the first upper bound for E(G) as
follows:

E(G) �
√

2en. (1)

Since then, numerous other bounds for E(G) were given (see, e.g., [1,6–9,11–16]).
Let us recall some upper bounds for E(G) which were obtained recently.
(1) Koolen and Moulton [13]: Let G be a graph with n vertices and e edges.

If 2e � n, then

E(G) � 2e

n
+

√
√
√
√(n − 1)

[

2e −
(

2e

n

)2
]

. (2)

Moreover, equality holds if and only if G is either n
2 K2, Kn or a non-complete

connected strongly regular graph with two non-trivial eigenvalues both with

absolute value

√
2e−( 2e

n )2

n−1 .
If 2e � n, then

E(G) � 2e. (3)

Equality holds if and only if G is disjoint union of edges and isolated vertices.
(1′) Koolen and Moulton [14]: Let G be a bipartite graph with n > 2

vertices and e edges. If 2e � n, then

E(G) � 2
(

2e

n

)

+
√
√
√
√(n − 2)

[

2e − 2
(

2e

n

)2
]

. (4)

Equality holds if and only if G is either n
2 K2, a complete bipartite graph or the

incidence graph of a symmetric 2-(v, k, λ)-design with k = 2e
n and λ = k(k−1)

v−1
(n = 2v, 2

√
e < n < 2e).



H. Liu et al. / Some Upper Bounds for the Energy of Graphs 47

(2) Zhou [19]: If G is a graph with n vertices, e edges, and degree sequence
d1, d2, . . . , dn, then

E(G) �

√
∑n

i=1 d2
i

n
+

√
√
√
√(n − 1)

(

2e −
∑n

i=1 d2
i

n

)

. (5)

Equality holds if and only if G is either n
2 K2, a complete bipartite graph, a non-

complete connected strongly regular graph with two non-trivial eigenvalues both

with absolute value
√

(2e − (2e
n )2)/(n − 1) or nK1.

(2′) Zhou [19]: If G is a bipartite graph with n > 2 vertices, e edges, and
degree sequence d1, d2, . . . , dn, then

E(G) � 2

√
∑n

i=1 d2
i

n
+

√
√
√
√(n − 2)

(

2e − 2
∑n

i=1 d2
i

n

)

. (6)

Equality holds if and only if G is either n
2 K2, a complete bipartite graph, the

incidence graph of a symmetric 2-(v, k, λ)-design with k = 2e
n , and λ = k(k−1)

v−1
(n = 2v) or nK1.

(3) Yu, et al. [17]: Let G be a non-empty graph with n vertices, e edges,
degree sequence d1, d2, . . . , dn, and 2-degree sequence t1, t2, . . . , tn. Then

E(G) �

√
√
√
√

∑n
i=1 t2

i∑n
i=1 d2

i

+
√
√
√
√(n − 1)

(

2e −
∑n

i=1 t2
i∑n

i=1 d2
i

)

. (7)

Equality holds if and only if one of the following statements holds:

(i) G ∼= n
2 K2; (ii) G ∼= Kn; (iii) G is a non-bipartite con-

nected p-pseudo-regular graph with three distinct eigenvalues(

p,

√
2m−p2

n−1 , −
√

2m−p2

n−1

)

, where p >

√
2m
n .

(3′) Yu et al. [17]: Let G = (X, Y ) be a non-empty bipartite graph with
n > 2 vertices, e edges, degree sequence d1, d2, . . . , dn and 2-degree sequence
t1, t2, . . . , tn. Then

E(G) � 2

√
√
√
√

∑n
i=1 t2

i∑n
i=1 d2

i

+
√
√
√
√(n − 2)

(

2e − 2
∑n

i=1 t2
i∑n

i=1 d2
i

)

. (8)

Equality holds if and only if one of the following statements holds:
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(i) G ∼= n
2 K2;

(ii) G ∼= Kr1,r2 ∪ (n − r1 − r2)K1, where r1r2 = m;

(iii) G is a connected (px , py)-pseudo-semiregular bipartite graph with four

distinct eigenvalues
(√

px py,

√
2e−2px py

n−2 , −
√

2e−2px py
n−2 , − √

px py

)

,

where
√

px py >

√
2e
n .

Note that inequality (2) and (4) can be obtained from inequality (5) and (6), and
the inequality (5) and (6) can be obtained from inequality (7) and (8) (see [17]).

In this paper, we first present two new upper bounds for E(G) in terms of
n, e, ti , and σi , from which we can improve some known results. We also obtain
another upper bound for the energy of a forest T in terms of n, e, the degree
di , and the average degree mi of one vertex vi , and give an example to illustrate
that our result is, in some sense, best.

2. The energy of a graph

In order to obtain a sharp upper bound for the energy of a graph, we need
the following lemmas.

In [18], for connected graph G, Hong and Zhang obtain an upper bound
of λ1(G). In fact, it also holds for any non-empty graph.

Lemma 2.1 [18]. Let G be a non-empty simple graph of order n. Then

λ1(G) �

√
√
√
√

∑n
i=1 σ 2

i∑n
i=1 t2

i

(9)

with equality if and only if

σ1

t1
= σ2

t2
= · · · = σn

tn

or G is a bipartite graph with V = {v1, v2, . . . , vs}∪{vs+1, vs+2, . . . , vn} such that
σ1/t1 = σ2/t2 = · · · σs/ts and σs+1/ts+1 = σs+2/ts+2 = · · · σn/tn.

Lemma 2.2 [4]. A graph G has only one distinct eigenvalue if and only if G is
an empty graph. A graph G has two distinct eigenvalues µ1 > µ2 with multiplic-
ities s1 and s2 if and only if G is the direct sum of s1 complete graphs of order
µ1 + 1. In this case, µ2 = −1 and s2 = s1µ1.

Lemma 2.3 [3]. Let G be a graph with e edges. Then

E(G) � 2
√

e (10)
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with equality if and only if G is a complete bipartite graph plus arbitrarily many
isolated vertices.

Lemma 2.4 [19]. Let

f (x) = 2x +
√

(n − 2)(2e − 2x2), x �
√

e,

and

g(x) = x +
√

(n − 2)(2e − x2), x �
√

2e.

Then f (x) and g(x) are monotonously decreasing in x �
√

2e
n .

First, we give an upper bound for E(G) and characterize those graphs for
which this bound is best possible.

Theorem 2.5. Let G be a non-empty simple graph with n vertices and e edges.
Then

E(G) �

√
√
√
√

∑n
i=1 σ 2

i∑n
i=1 t2

i

+
√
√
√
√(n − 1)

(

2e −
∑n

i=1 σ 2
i∑n

i=1 t2
i

)

. (11)

Equality holds if and only if one of the following statements holds:

(1) G ∼= n
2 K2; (2) G ∼= Kn; (3) G is a non-bipartite connected graph satisfy-

ing σ1
t1

= · · · = σn
tn

and has three distinct eigenvalues
(

p,

√
2e−p2

n−1 , −
√

2e−p2

n−1

)

,

where p = σ1
t1

= · · · = σn
tn

>

√
2e
n .

Proof. Let λ1 � λ2 � · · · � λn be the eigenvalues of G. By the Cauchy–
Schwartz inequality, we have

n∑

i=2

|λi | �
√

(n − 1)
∑n

i=2
λ2

i =
√

(n − 1)(2e − λ2
1).

Hence

E(G) � λ1 +
√

(n − 1)(2e − λ2
1).

By lemma 2.1, we have

λ1 �

√
√
√
√

∑n
i=1 σ 2

i∑n
i=1 t2

i
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and equality holds if and only if σ1/t1 = σ2/t2 = · · · = σn/tn, or G is a bipar-
tite graph with V = {v1, . . . , vs} ∪ {vs+1, . . . , vn} such that σ1/t1 = · · · σs/ts and
σs+1/ts+1 = · · · = σn/tn.

Noting that d1σ1 +d2σ2 +· · ·+dnσn = t2
1 + t2

2 +· · ·+ t2
n and t1 + t2 +· · ·+ tn =

d2
1 + d2

2 + · · · + d2
n , we have

λ1(G) �

√
√
√
√

∑n
i=1 σ 2

i∑n
i=1 t2

i

�

√
√
√
√

(∑n
i=1 diσi

)2

∑n
i=1 t2

i

∑n
i=1 d2

i

=
√
√
√
√

∑n
i=1 t2

i∑n
i=1 d2

i

�

√
√
√
√

(∑n
i=1 ti

)2

n
∑n

i=1 d2
i

=
√
√
√
√1

n

n∑

i=1

di
2 �

√
2e

n
. (12)

Hence, by lemma 2.4, g(λ1(G)) � g

(√∑n
i=1 σ 2

i∑n
i=1 t2

i

)

, which implies

E(G) �

√
√
√
√

∑n
i=1 σ 2

i∑n
i=1 t2

i

+
√
√
√
√(n − 1)

(

2e −
∑n

i=1 σ 2
i∑n

i=1 t2
i

)

.

If G is one of the three graphs shown in the second part of the theorem,
it is easy to check that the equality (11) holds. Conversely, if the equality (11)
holds, according to the above argument, we have

λ1(G) =
√
√
√
√

∑n
i=1 σ 2

i∑n
i=1 t2

i

,

which implies that σ1/t1 = σ2/t2 = · · · = σn/tn, or G is a bipartite graph with
V = {v1, . . . , vs} ∪ {vs+1, . . . , vn} such that σ1/t1 = · · · = σs/ts and σs+1/ts+1 =
· · · σn/tn. Moreover, |λi | =

√
2e−λ2

1
n−1 (2 � i � n). Note that G has only one distinct

eigenvalue if and only if G is an empty graph. We are reduced to the following
two possibilities:

(1) G has two distinct eigenvalues.
If the two distinct eigenvalues of G have the same absolute value, then

λ1 = |λi | =
√

2e−λ2
1

n−1 (2 � i � n). By lemma 2.2, |λi | =
√

2e−λ2
1

n−1 = 1 (2 �
i � n). Hence 2e = n, which implies G ∼= n

2 K2.
If the two eigenvalues of G have different absolute values, then by
lemma 2.2, λi = −1 (2 � i � n). Moreover, G is a complete graph
of order n, i.e., G ∼= Kn.

(2) G has three distinct eigenvalues.
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In this case, λ1 =
√∑n

i=1 σ 2
i∑n

i=1 t2
i

and |λi | =
√

2e−λ2
1

n−1 (2 � i � n). Moreover, λ1 > λi

and λi �= 0. Combining the fact that
σ1

t1
= σ2

t2
= · · · = σn

tn

or G is a bipartite graph with V = {v1, . . . , vs}∪{vs+1, . . . , vn} such that σ1/t1 =
· · · = σs/ts and σs+1/ts+1 = · · · = σn/tn, we have G is a non-bipartite con-
nected graph with σ1

t1
= σ2

t2
= · · · = σn

tn
and has three distinct eigenvalues

(

p,

√
2e−p2

n−1 , −
√

2e−p2

n−1

)

, where p =
√∑n

i=1 σ 2
i∑n

i=1 t2
i

= σi
ti

= ti
di

>

√
2e
n (1 � i � n).

This completes the proof theorem 2.5.

Note 2.6. By (12), we have the bound (11) is better than (2), (5), and (7).

3. The energy of a bipartite graph

In this section, we give an upper bound for the energy of a bipartite graph
and characterize those graphs for which this bound is best possible.

Theorem 3.1. Let G = (X, Y ) be a non-empty bipartite graph with n > 2 ver-
tices and e edges. Then

E(G) � 2

√
√
√
√

∑n
i=1 σ 2

i∑n
i=1 t2

i

+
√
√
√
√(n − 2)

(

2e − 2
∑n

i=1 σ 2
i∑n

i=1 t2
i

)

. (13)

Equality holds if and only if one of the following statements holds:

(1) G ∼= n
2 K2;

(2) G ∼= Kr1,r2 ∪ (n − r1 − r2)K1, where r1r2 = e;

(3) G is a connected bipartite graph with V ={v1, v2, . . . , vs}∪ {vs+1, vs+2,

. . . , vn} such that σ1/t1 = σ2/t2 = · · · = σs/ts and σs+1/ts+1 =
σs+2/ts+2 = · · · = σn/tn, and has four distinct eigenvalues(√

px py,

√
2e−2px py

n−2 , −
√

2e−2px py
n−2 , − √

px py

)

, where px = σ1/t1 =
· · · σs/ts , py = σs+1/ts+1 = · · · σn/tn and

√
px py >

√
2e
n .

Proof. Let λ1 � λ2 � · · · � λn be the eigenvalues of G. Since G is a bipartite
graph, we have λ1 = −λn. By the Cauchy–Schwartz inequality,

n−1∑

i=2

|λi | �
√

(n − 2)
∑n−1

i=2
λ2

i =
√

(n − 2)(2e − 2λ2
1).
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Hence

E(G) � 2λ1 +
√

(n − 2)(2e − 2λ2
1).

By lemma 2.1, we have

λ1 �

√
√
√
√

∑n
i=1 σ 2

i∑n
i=1 t2

i

,

and equality holds if and only if σ1/t1 = σ2/t2 = · · · = σn/tn, or G is a bipartite
graph with V = {v1, . . . , vs} ∪ {vs+1, . . . , vn} such that σ1/t1 = · · · = σs/ts and
σs+1/ts+1 = · · · = σn/tn.

Noting that d1σ1 +d2σ2 +· · ·+dnσn = t2
1 + t2

2 +· · ·+ t2
n and t1 + t2 +· · ·+ tn =

d2
1 + d2

2 + · · · + d2
n , we have

λ1(G) �

√
√
√
√

∑n
i=1 σ 2

i∑n
i=1 t2

i

�

√
√
√
√

∑n
i=1 t2

i∑n
i=1 d2

i

�

√
√
√
√

(∑n
i=1 ti

)2

n
∑n

i=1 d2
i

=
√
√
√
√1

n

n∑

i=1

di
2 �

√
2e

n
. (14)

So f (λ1(G)) � f

(√∑n
i=1 σ 2

i∑n
i=1 t2

i

)

, which implies E(G) � 2

√∑n
i=1 σ 2

i∑n
i=1 t2

i
+

√

(n − 2)

(

2e − 2
∑n

i=1 σ 2
i∑n

i=1 t2
i

)

.

If G is one of the three graphs shown in the second part of the theorem,
it is easy to check that the equality in (13) holds. Conversely, if the equality in
(13) holds, according to the above argument, we have

λ1 = −λn =
√
√
√
√

∑n
i=1 σ 2

i∑n
i=1 t2

i

,

which implies that G is a connected bipartite graph with V = {v1, . . . , vs} ∪
{vs+1, . . . , vn} such that σ1/t1 = · · · = σs/ts and σs+1/ts+1 = · · · = σn/tn. More-

over, |λi | =
√

2e−2λ2
1

n−2 (2 � i � n − 1). We are reduced to the following three
possibilities:

(1) G has two distinct eigenvalues which have the same absolute value.

λ1 = −λn = |λi | =
√

2e−2λ2
1

n−2 (2 � i � n − 1). By lemma 2.2, λn =

−
√

2e−2λ2
1

n−2 = −1. Hence 2e = n, which implies G ∼= n
2 K2.
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(2) G has three distinct eigenvalues.
In this case, noting that G is a bipartite graph, we have λ1 = −λn =√∑n

i=1 σ 2
i∑n

i=1 t2
i

and λi =
√

2e−2λ2
1

n−2 = 0 (2 � i � n − 1), which implies that

E(G) = 2λ1 = 2
√

e. By lemma 2.3, we have G ∼= Kr1,r2 ∪ (n −r1 −r2)K1,
where r1r2 = e.

(3) G has four distinct eigenvalues.

In this case, noting that the multiplicity of λ1 is one, we have G is a con-
nected bipartite graph with V = {v1, v2, . . . , vs} ∪ {vs+1, vs+2, . . . , vn} satisfying
σ1/t1 = σ2/t2 = · · · = σs/ts and σs+1/ts+1 = σs+2/ts+2 = · · · = σn/tn, and G has

four distinct eigenvalues
(√

px py,

√
2e−2px py

n−2 , −
√

2e−2px py
n−2 , − √

px py

)

, where

px =
√

σi
ti

, 1 � i � s, py =
√

σ j
t j

, s+1 � j � n and
√

px py >

√
2e
n . This completes

the proof of theorem 3.1.

Note 3.2. By (14), we have the bound (13) is better than (4), (6), and (8).

4. The energy of a forest

In order to investigate the energy of a forest, we need the following lemmas.

Lemma 4.1 [5]. Let T be a tree of order n (n � 2) and suppose that there exists
a vertex vi ∈ V (T ) such that l(vi ) � 2, then

λ1(T ) �
√

d + m − 1, (15)

where d = d(vi ) and m = mi . Moreover, the equality holds in (15) if and only if
the degree of the neighbors of vi are equal.

Lemma 4.2 [4]. Let G be a graph and G ′ a subgraph of G. Then λ1(G ′) � λ1(G)

and equality holds if and only if G ′ = G.

Let Tdi ,d j (d j � 2) be a tree obtained by joining the centers of di copies of
K1,d j −1 to a new vertex vi . Then T1,n−1 = K1,n−1.

In this section, the proof of our main result is carried out mainly by the fol-
lowing lemma (given in Das Thesis). We give the proof here for reference only.

Lemma 4.3. Let T be a tree with order n, degree sequence d1, d2, . . . , dn and
average 2-degree sequence m1, m2, . . . , mn. Then

λ1(T ) � max{
√

di + mi − 1 : 1 � i � n}. (16)
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Moreover, the equality in (16) holds if and only if T ∼= Tdi ,d j .

Proof. We know that if H is a subgraph of G, then λ1(H) � λ1(G). Thus by
Lemma 4.1, we have

λ1(T ) �
√

di + mi − 1, 1 � i � n. (17)

By (17) and (16) holds immediately.
Now suppose that the equality holds in (16). That is, for some vi ∈ V (T ),

λ1(T ) =
√

di + mi − 1.

Note that if T ′ ⊂ T , then λ1(T ′) < λ1(T ) by Lemma 4.2. Therefore T = Tdi ,d j

by Lemma 4.1.
Conversely, let T = T (di , d j ). It is easily to check that the equality holds in

(16).

Theorem 4.4. Let T be a forest with n vertices, e edges, degree sequence
d1, d2, . . . , dn and average 2-degree sequence m1, m2, . . . , mn. Then

E(T ) � 2
√

s + √
(n − 2) (2e − 2s), (18)

where s = max {di + mi − 1 : 1 � i � n} . Equality holds if and only if one of
the following statements holds:

(i) T ∼= n
2 K2;

(ii) T ∼= K1,e ∪ (n − 1 − e)K1;

(iii) T ∼= Tdi ,d j ( di � 2) with four distinct eigenvalues
(√

s,
√

2e−2s
n−2 ,

−
√

2e−2s
n−2 , −√

s

)

.

Proof. Let λ1 � λ2 � · · · � λn be the eigenvalues of T . Since T is a bipartite
graph, we have λ1 = −λn. By the Cauchy–Schwartz inequality,

n−1∑

i=2

|λi | �
√

(n − 2)
∑n−1

i=2
λ2

i =
√

(n − 2)(2e − 2λ2
1).

Hence

E(T ) � 2λ1 +
√

(n − 2)(2e − 2λ2
1).

By lemma 4.3, we have

λ1 � max{
√

di + mi − 1, 1 � i � n} = √
s
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and equality holds if and only if T has a component T ′ ∼= Tdi ,d j .
Noting that

λ1 � max{
√

di + mi − 1, 1 � i � n} = √
s �

√
2e/n

and hence, by lemma 2.4, we have f (λ1) � f
(√

s
)
, which implies

E(T ) � 2
√

s + √
(n − 2) (2e − 2s).

If G is one of the three graphs shown in the second part of the theorem, it
is easy to check that the equality in (18) holds.

Conversely, if the equality in (18) holds, according to the above argument,
we have λ1 = −λn = √

s, which implies that T has a component T ′ ∼= Tdi ,d j .

Moreover, |λi | =
√

2e−2λ2
1

n−2 (2 � i � n − 1). We are reduced to the following three
possibilities:

(1) T has two distinct eigenvalues which have the same absolute value.

λ1 = −λn = |λi | =
√

2e−2λ2
1

n−2 (2 � i � n − 1). By lemma 2.2, λn =

−
√

2e−2λ2
1

n−2 = −1. Hence 2e = n, which implies T ∼= n
2 K2.

(2) T has three distinct eigenvalues.

In this case, noting that T is a bipartite graph, we have λ1 = −λn = √
s

and λi =
√

2e−2λ2
1

n−2 = 0 (2 � i � n−1), which implies that E(T ) = 2λ1 =
2
√

e. By lemma 2.3, we have T ∼= K1,e ∪ (n − 1 − e)K1.

(3) T has four distinct eigenvalues.

In this case, noting that the multiplicity of λ1 is one, we have T ∼= Tdi ,d j

and T has four distinct eigenvalues
(√

s,
√

2e−2s
n−2 , −

√
2e−2s
n−2 , − √

s
)

.
This completes the proof of theorem 4.4.

Let T be a tree with n vertices. Then di � 1 and mi � 1 for 1 � i � n. Note
that di + mi = 2 if and only if T ∼= K2, and if di + mi � 3, then di + mi − 1 �
2 > 2(n − 1)/n = 2e/n. Thus

√
di + mi − 1 �

√
2e

n
, 1 � i � n.

From the proof of theorem 4.4, we have the following result.
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Figure 1.

Theorem 4.5. Let T be a tree with n vertices, degree sequence d1, d2, . . . , dn and
average 2-degree sequence m1, m2, . . . , mn. Then

E(T ) � min
{

2
√

di + mi − 1 + √
(n − 2) (2n − 2di − 2mi ) : 1 � i � n

}
. (19)

Equality holds if and only if T is either K2, a star K1,n−1 or T ∼= Tdi ,d j , di �

2 with four distinct eigenvalues
(√

di + mi − 1,
√

2n−2di −2mi
n−2 , −

√
2n−2di −2mi

n−2 ,

−√
di + mi − 1

)

.

Note 4.6. The bound (19) is always better than (4) for trees.

Note 4.7. It is easily to check that the bound (19) is better than (6) and (8) for
T ∗, where T ∗ is a graph shown in figure 1.
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